
Webinar On

Documenting GraphQL APIs:
How is it different than REST?

Speaker

Mark Wentowski
API Documentation Specialist

Independent consultant

Why learn GraphQL?

● Growing popularity
● Facilitate communication: frontend /backend
● Write interactive examples
● Enhance API developer experience

GraphQL vs. REST

● They both approaches to designing APIs
● They differ significantly in how they structure data and how

clients interact with the API
● Not mutually exclusive

REST

➤ GraphQL vs. REST

● Architectural style for designing networked applications
● Manage information by using web addresses
● Strictly defined data structures

REST - ‘endpoint-based’
➤ GraphQL vs. REST

➤ GraphQL vs. REST

REST - ‘fixed and structured’

GraphQL

➤ GraphQL vs. REST

● GraphQL is a query language
● Schema-based approach to requesting data

GraphiQL - ‘flexible’
➤ GraphQL vs. REST

Underfetching / Overfetching

1. Why can’t I get
all the data I
need in one
request?

2. Why do I have to
get back all this
data when I only
need a subset?

Fake Blog API
➤ Overfetching / Underfetching

REST Example: Underfetching

I want details for a specific blog post and its comments.

➤ Overfetching / Underfetching

Request #1:

Request #2:

GraphQL - Fetch with one request

➤ Overfetching / Underfetching

Request Response

REST Example: Overfetching

I want specific user details.

➤ Overfetching / Underfetching

Request:

Response:

GraphQL - Fetch subset of data

➤ Overfetching / Underfetching

Request Response

Documenting GraphQL APIs -
Field descriptions

➤ Documenting GraphQL APIs

Code comments

Google sheets + scripts

JSON / YML + scripts

Documenting GraphQL APIs -
Conceptual docs

● Knowledge bases
● Help authoring tools
● Static site generators (Markdown / git)

➤ Documenting GraphQL APIs

Single endpoint

➤ Documenting GraphQL APIs

Example GraphQL endpoint:
● https://fakeblogapi.com/graphql

Documentation
Strategy

● Provide a code example demonstrating how to
send queries to the GraphQL endpoint using
libraries.

https://fakeblogapi.com/graphql

Query language focus

➤ Documenting GraphQL APIs

Example "GraphQL is the query language used by the Blog API
to allow clients to fetch data from the server."

Documentation
Strategy

● Introduce GraphQL and key features
● Compare GraphQL with traditional RESTful APIs

Schema documentation

➤ Documenting GraphQL APIs

Example

Documentation
Strategy

● Document types, fields and relationships.

GraphiQL support

➤ Documenting GraphQL APIs

Example “The Blog API supports GraphiQL, an interactive IDE
for exploring and testing GraphQL queries."

Documentation
Strategy

● Introduce GraphiQL
● Access instructions
● Testing examples

Query Variables

➤ Documenting GraphQL APIs

Example

Documentation
Strategy

● Describe role of query variables
● Demonstrate how to use query variables

Introspection queries

➤ Documenting GraphQL APIs

Example

Documentation
Strategy

● Explain introspection in GraphQL
● Provide examples that developers can execute to

explore the API's schema.

Security

➤ Documenting GraphQL APIs

Example

Documentation
Strategy

● Explain that sensitive information should not be
requested.

● Provide best practices for ensuring confidential
information is not exposed.

Error handling

➤ Documenting GraphQL APIs

Example

Documentation
Strategy

● Explain the structure of error responses
● Document common error scenarios and how to

handle them

Tutorials

➤ Documenting GraphQL APIs

Example Describe the scenario where a user wants to create a
new blog post through the API.

Documentation
Strategy

Provide real-world examples and step-by-step guides,
developers can understand how to interact with the API
in practical scenarios.

Example tutorial

➤ Documenting GraphQL APIs

Create a new blog post

Explain the purpose of the mutation and its expected
input fields (title, content, and authorId).

1. Mutation Query: Provide the mutation query with
placeholders for the required variables.

2. Query Variables: Explain the purpose of each
query variable ($title, $content, and $authorId) and
their expected data types.

3. Execution: Show how to execute the mutation with
actual values for the query variables.

4. Response: Explain the structure of the response
and how to interpret the returned data (in this case,
the id, title, and createdAt fields of the newly
created post).

Sample request

Sample response

Questions ?

Thank You!

